
Eur. Phys. J. B 17, 295–299 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. Chiral order of the Josephson-junction ladder with half a flux quantum per plaquette is stud-
ied by means of the exact diagonalization method. We consider an extreme quantum limit where each
superconductor grain (order parameter) is represented by S = 1/2 spin. So far, the semi-classical S →∞
case, where each spin reduces to a plane rotator, has been considered extensively. We found that in the
case of S = 1/2, owing to the strong quantum fluctuations, the chiral (vortex lattice) order becomes dis-
solved except in a region, where attractive intrachain and, to our surprise, repulsive interchain interactions
both exist. On the contrary, for considerably wide range of parameters, the superconductor (XY ) order
is kept critical. The present results are regarded as a demonstration of the critical phase accompanying
chiral-symmetry breaking predicted for frustrated XXZ chain field-theoretically.

PACS. 75.10.Jm Quantized spin models – 85.25.Cp Josephson devices – 75.40.Mg Numerical simulation
studies

1 Introduction

By means of a field-theoretical technique, Nersesyan,
Gogolin and Eßler claimed [1] that the ground state of
the XXZ spin chain with sufficiently strong next-nearest-
neighbor interaction is in the chiral phase, where the
spin-screw chirality is broken spontaneously. Their pro-
posal is astonishing, because the XXX counterpart, that
has been studied very extensively so far [2–7], is known
to be in the dimer phase, where the translational sym-
metry is broken spontaneously so long as the frustra-
tion is strong enough. New treatments devised specifi-
cally for XXZ were reported [8,9,27,28] so as to support
the aforementioned scenario. Meanwhile, as for other frus-
trated XXZ chain, namely, the three-leg ladder with di-
agonal interchain interaction, Azaria et al. argued [10,11]
that a unique critical phase possessing high central charge
(c = 2) might be realized in the ground state. Accord-
ing to their argument, the chiral-symmetry breaking is
significant to stabilize such high-c criticality. These re-
cent developments tell that the XXZ anisotropy with
in-plane frustration may give rise to unexpected exotic
phases. The above-mentioned proposals are all based on
field-theoretical descriptions. Therefore, in order to sup-
port these scenarios, numerical simulations should be
carried out. Kaburagi et al. employed the exact diago-
nalization and the density-matrix renormalization-group
methods for the XX model with the next-nearest-
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neighbor coupling [12,13]. They concluded that the chi-
rality is not broken for the S = 1/2 chain, whereas it
would be broken for the S = 1 chain; namely, numerical-
simulation result for S = 1/2 appears to contradict the
field-theoretical description. Nevertheless, numerical sim-
ulation of such frustrated chain itself is a matter of serious
methodological concern [5]; main obstacles are due to the
exponentially small energy gap and incommensurability
of the spin-correlation function, which often miss-matches
the total system sizes.

In order to avoid such complications that would arise
from incommensurability, we have investigated the two-leg
Josephson-junction ladder,

H = −
t‖
2

L∑
i=1

(eiΦa†1ia1,i+1 + e−iΦa†1,i+1a1i)

−
t‖
2
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†
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with gauge-twist angle,

Φ = π. (2)

Here, ali and a†li are the hard-core boson annihilation and
creation operators, respectively, at the ith site along the
lth leg. The parameters t‖, t⊥, V‖ and V⊥ control the in-
trachain hopping amplitude, the interchain hopping am-
plitude, the nearest-neighbor intrachain attraction and the
interchain attraction, respectively. The number of bosons
is set to N = L (half filled). Throughout this paper, we
choose t‖ as the unit of energy; namely,

t‖ = 1. (3)

We have imposed the periodic-boundary condition along
the ladder; al,L+1 = al,1. The angle Φ denotes the gauge
twist around each plaquette. Because the angle is set to
Φ = π, the ladder is subjected to a uniform magnetic field
of half a flux quantum per plaquette. That is, suppose
that the bosons are in the superconducting state (this is
a subtle issue in one dimension), the magnetic flux would
possibly be quantized so as to form rigid vortex-lattice or-
der along the ladder. This order is confirmed to develop
in the preceding semi-classical analysis [18]. That is, the
chiral order of our model has two-unit-cell periodicity. For
the purpose of studying the stability of chirality against
the quantum fluctuation numerically, our model is far
more advantageous than the frustrated spin chain, because
the spin-screw chiral order of the latter model has long-
wavelength incommensurate structure, and thereby the
numerical data suffer from insystematic finite-size-scaling
behavior. Tendency to the formation of such vortex-lattice
structure may become more transparent, if we transform
the boson Hamiltonian (1) in terms of spin: Through uti-
lizing the mapping relations between the hard-core boson
and the spin-1/2 operators, namely, ali = S−li , a†li = S+

li

and a†liali − 1/2 = Szli, the above boson model is mapped
to the XXZ spin ladder,

H = t‖
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apart from a constant term. Note that the signs of the
XY -component magnetic interactions are different from
one leg and the other, and thus an in-plane frustration
does exist. Therefore, vortex-antivortex alignment gets fa-
vored. The semi-classical version S →∞ of the model (4)
has been studied extensively [14–18]: In the limit, spins are
represented by rotators, and through path-integral map-
ping, the system reduces to a two-dimensional classical

rotator model. According to numerical-simulation stud-
ies [14,15,17], that rotator model appears to be in the KT
critical phase. To our surprise, surrounded by such crit-
ical background of in-plane spin components, rigid long-
range chiral order develops. And so, it is our motivation
to investigate the stability of the chiral order against the
quantum fluctuations of S = 1/2. We show in this paper,
that the chiral order fails to develop except in a limited
condition, where an attractive intrachain coupling and a
repulsive interchain coupling are both turned on. This new
phase is to be regarded as a demonstration of critical phase
accompanying chiral-symmetry breaking predicted field-
theoretically [1,8,9].

Let us mention some remarks concerning the present
ladder model described by either boson representation
equation (1) or spin representation equation (4). One
might wonder that the hard-core condition, in other
words, the S = 1/2 condition, would be too restrictive,
and the model misses microscopic physical ingredients
such as the intra-and-inter-grain charge capacitances. Ac-
tually, setup of our model might be rather phenomenolog-
ical. We stress, however, that the one-dimensional XXZ
chains belong to the Tomonaga-Luttinger-liquid univer-
sality class irrespective of S [19]. (Empirically, it is known
that one-dimensional quantum systems possessing the
U(1) symmetry are flown to that universality in many
cases.) As a matter of fact, according to the proposal [19],
the transverse-correlation exponent η⊥ is governed by the
compact formula,

η⊥ =
π − cos−1 Jz

2πS
· (5)

(In our notation, Jz is given by Jz = −V‖.) That is,
through varying Jz, one can cover all possible range of η⊥
with S = 1/2 fixed. Lastly, we mention the possibility of
the so-called “spin liquid” state that often arises in quan-
tum spin systems; here, the term “spin liquid” denotes
the state with exponentially decaying short-range corre-
lation function. The conventional two-leg ladder [20,21]
(with non-frustrated interchain coupling) is a prototypi-
cal system exhibiting spin-liquid state. We will show that
our frustrated ladder does exhibit spin-liquid phase for a
certain parameter condition beside the chiral phase.

This paper is organized as follows. In the next section,
we explore the ladder model by means of the exact diago-
nalization method. The last section is devoted to summary
and discussions.

2 Numerical results

In this section, we present numerical results. We carried
out exact-diagonalization calculations for the system (4)
with up to N = 2L = 32 spins. The data are analyzed in
terms of the finite-size-scaling theory.

In Figure 1, we have plotted the Binder para-
meter [22,23],

U = 1− 〈M4〉
3〈M2〉2 , (6)
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Fig. 1. Binder parameter for the chiral order (7) is plotted for
t‖ = 1, t⊥ = 0.5, V‖ = 0.6 and various V⊥. The symbols (◦),
(�), (�), (4) and (/) denote the data for the system sizes L = 8,
10, 12, 14 and 16, respectively. We see that the chiral order
develops in the repulsive interchain coupling −1.8 . V⊥ . 0.

for the chiral order,

M = Mchiral =
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i=1

(−1)i [S1i × S2i]z
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(−1)i(Sx1iS
y
2i − S

y
1iS

x
2i)

=
1
2i

L∑
i=1
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†
2i), (7)

for the system (1) with t⊥ = 0.5, V‖ = 0.6 and V⊥ var-
ied. Here, 〈· · · 〉 denotes the ground-state average. Note
that in the boson language, Mchiral measures the stag-
gered boson current through the rungs. Therefore, it de-
tects the formation of the vortex-lattice order. Finite-size
scaling behavior of the Binder parameter contains infor-
mation whether the order M develops or not [22,23]: If
the order is long (short) ranged, the Binder parameter
grows (becomes suppressed) through enlarging the sys-
tem sizes. At critical point, the Binder parameter remains
scale-invariant. From Figure 1, we found that the chiral
order develops for the parameter range −1.8 . V⊥ . 0,
while it is short ranged otherwise. As would become more
apparent in the subsequent analyses, the strong-coupling
regions of V⊥ & 2.5 and V⊥ . −1.8 belong to insulator
phases of different characters, and are thus rather out of
present concern. For V⊥ & 2.5, for instance, the bosons are
so cohesive that they may constitute an island in the sea
of vacant sites; namely, the system becomes “phase sepa-
rated”. On the other hand, for V⊥ . −1.8, owing to the
strong repulsion, a Mott gap opens between the bonding
and anti-bonding excitation branches.

Our result shows that the region of the chiral phase is
limited. Hence, we found that quantum fluctuations are
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Fig. 2. Scaled kink energy (8) is plotted for the same parame-
ter range as that of Figure 1. The symbols (◦), (�), (�), (4) and
(/) denote the data for the system sizes L = 7, 9, 11, 13 and
15, respectively. In the region −1.8 . V⊥ . 0, where the chi-
ral phase is realized (see Fig. 1), the scaled kink energy grows
actually. On the contrary, in the attractive region V⊥ & 0, the
scaled kink energy stays scale-invariant. This indicates that
a critical phase, probably of the XY mode, is realized; see
Figure 3.

dominating so that unlike the semi-classical case, assis-
tance of the many-body correlations of V‖ and V⊥ is vital
for stabilizing the chiral order. After scanning the parame-
ter space, we found that the optimal condition lies around
t⊥ = 0.5, V‖ = 0.6 and V⊥ = −1. It is fairly reason-
able that the optimal intrachain interaction is attractive,
because attractive interaction enhances the tendency to-
ward superconductivity (XY order); see equation (5), for
instance. On the contrary, the fact that the repulsive in-
terchain interaction is favorable sounds astonishing. It is
expected that the repulsive interchain coupling might en-
hance the particle exchange between the chains. Hence,
we see that such particle exchange is significant in order
to confine (pin) the magnetic fluxes at each plaquette.

In order to confirm the above phase diagram, we have
calculated the scaled domain-wall energy,

L∆E(L) = L

(
Eg(L)− LEg(L+ 1)

L+ 1

)
· (8)

Eg(L) denotes the ground-state energy of the system with
size L, which is supposed to be odd integer. For the sys-
tem with odd number of plaquettes, one domain wall is
created in the alternating alignment of vortex-antivortex
structure. As would be apparent from the definition (8),
∆E measures the extra domain-wall energy cost due
to the kink. Hence, for ordered phase, the scaled kink en-
ergy should increase linearly with respect to L, while for
disordered phase, L∆E vanishes exponentially; namely,
∼ e−L/ξ with correlation length ξ. At critical point, L∆E
should be scale-invariant, because ∆E is of scaling dimen-
sion 1/L; note the relations ∆E ∼ 1/ξ ∼ 1/L. In Figure 2,
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Fig. 3. Binder parameter for the XY order (9) is plotted for
t‖ = 1, t⊥ = 0.5, V‖ = 0.6 and various V⊥. The symbols
(◦), (�), (�), (4) and (/) denote the data for the system sizes
L = 8, 10, 12, 14 and 16, respectively. The XY order appears
to be critical in the region −1.8 . V⊥ . 2.5. In the region,
the fixed point value of the Binder parameter seems to be un-
changed. Hence, we see that the XY order is not influenced by
the change of V⊥.

we plotted L∆E for the same parameter range as that
of Figure 1. In fact, in the chiral phase −1.8 . V⊥ . 0,
which is estimated from the above Binder-parameter anal-
ysis, we observe clear signature of the chiral-domain-wall
energy cost. On the other hand, in the area 0 . V⊥ . 2.5,
L∆E seems to be scale-invariant. In the former analysis of
Figure 1, we have concluded that in the region, the chiral-
ity is disordered. Hence, we conclude that in 0 . V⊥ . 2.5,
the XY order, rather than the chiral order, exhibits crit-
icality. As are mentioned above, the strong-coupling re-
gions of V⊥ & 2.5 and V⊥ . −1.8 are belonging to in-
sulator phases with different characters. In terms of the
pictures presented above, the behaviors of L∆E in these
regions are readily understandable. The blowup of L∆E
for V⊥ & 2.5 is due to a kink (dislocation) formed in the
island of particles; note that the particle occupation num-
ber is forced to be half-filled. On the other hand, the rapid
closure of L∆E for V⊥ . −1.8 is precisely due to the fact
that the system is a Mott insulator.

Let us turn to the XY order. In Figure 3, we plot-
ted the Binder parameter (6) for the in-plane spontaneous
magnetization (XY order), which corresponds to the su-
perconductivity (gauge coherence) order parameter in the
boson language,

M2 = M2
XY =

∑
li mj

(SxliS
x
mj + SyliS

y
mj), (9)

for the same parameter range as that of former figures.
From the plot, we observe that the XY order is kept criti-
cal for considerably wide range of parameter −1.8 . V⊥ .
2.5. We notice that this XY critical phase does contain
the chiral phase. This feature is quite contrastive to that
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Fig. 4. Binder parameter for the XY order (9) is plotted for
t‖ = 1, t⊥ = 0.5, V⊥ = −1 and various V‖. The symbols
(◦), (�), (�), (4) and (/) denote the data for the system sizes
L = 8, 10, 12, 14 and 16, respectively. The XY order becomes
disordered eventually in the repulsive intrachain coupling V‖ .
0 and driven to spin-liquid phase.

of the semi-classical case S → ∞, where the chirality
is stronger (more stable) than the XY order, and thus
the chiral phase contains the XY phase [15]. Moreover, it
should be noted that in the critical region, the fixed-point
value of the Binder parameter is kept hardly changed.
In consequence, we found that the XY correlation func-
tion is not influenced very much by V⊥, while the chiral
sector is affected significantly by V⊥. These results show
that those two sectors behave independently; in the com-
monly referred terminology, those two sectors are “sepa-
rated”. Such the situation where each mode is described
by respective low-energy effective theory occurs commonly
in one-dimensional physics. This point is discussed in
Section 3.

Lastly, let us turn our attention to the possibility of
spin-liquid state. The simplest way to realize the spin-
liquid state is given just by setting t⊥ to a very large
value. In that strong-interchain-coupling limit, the bond-
ing and anti-bonding excitation branches are separated
so that a band gap opens and thereby the ground state
becomes disordered. Other than that rather trivial way,
we found that the spin-liquid state is accessible from
the set of parameters treated in the former Figures 1-3
just through setting V‖ repulsive; see Figure 4, where
we plotted the Binder parameter for the XY order for
t⊥ = 0.5, V⊥ = −1 and various V‖. We see that for
attractive coupling 0 . V‖ . 0.7, the XY sector stays
critical as is presented before. (The rapid suppression
of UXY in V‖ & 0.7 is due to phase separation caused
by strong attraction.) On the other hand, for repulsive
coupling V‖ . 0, the XY order becomes disordered even-
tually and driven to a spin-liquid phase. This behavior
tells that the interchain coupling is a relevant perturbation
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in V‖ . 0. That feature coincides with that of the con-
ventional non-frustrated ladder [24–26]. We discuss this
similarity in the next section.

3 Summary and discussions

We have diagonalized the Josephson-junction ladder sub-
jected to the uniform magnetic field of half a flux quan-
tum per plaquette (1). Unlike the semi-classical case, the
chiral order suffers from strong disturbances due to quan-
tum fluctuations. In order to stabilize the chiral order, we
need to tune carefully the many-body interactions such as
V‖ = 0.6 and V⊥ = −1. It is surprising that the repulsive
interchain interaction gives rise to the stabilization of the
chiral order. This fact indicates that the particle exchange
across the chains over the rungs, rather than the gauge
coherence, is vital for pinning the vortices at each pla-
quette. On the contrary, we found that the XY order (9)
is insensitive to V⊥; the XY order is kept critical for con-
siderably wide range of parameters. This result indicates
that the chiral and XY sectors are separated.

In quantum spin systems, owing to the strong quan-
tum fluctuations, the so-called spin-liquid state can ap-
pear [20]. The spin-liquid state, in fact, has been the main
concern in the course of studies of the (non-frustrated)
two-leg ladder [21]. Close to the chiral phase mentioned
above, we found that a spin-liquid state emerges just
through changing the sign of V‖. Surprisingly, this behav-
ior coincides with that of the conventional ladder; with
the bosonization method [24–26], it was shown that the
interchain coupling becomes relevant for V‖ . 0 (antifer-
romagnetic intrachain interaction). Hence, it is suggested
that the XY mode of our frustrated ladder and that of
the conventional ladder behave similarly. This similarity
might be reasonable, if we remember the separation of
the chiral and XY sectors mentioned above. Hence, it is
suggested that the present critical phase, as well as that
of conventional ladder [24–26], belongs to the universality
class of the central charge c = 1 [24–26]. Direct identifi-
cation of the universality class in terms of the finite-size
conformal-field theory, for instance, may be exceedingly
troublesome, because the excitation structure of the XY
sector is smeared by that of the chiral sector. This would
remain for future study.

The author is grateful to Professor I. Harada for helpful
discussions.
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